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The Hartree-Fock code FRANCHFRI, which uses a finite-range nucleon-nucleon interaction, has
been written and benchmarked. This code represents a new LLNL capability for realistic calcula-
tions in both nuclear-structure and nuclear-reaction physics. The use of a finite-range interaction
represents a considerable improvement over other Hartree-Fock codes currently available in the pub-
lic domain, which rely on zero-range forces. The finite-range force does not simply lead to a more
realistic treatment of the nuclear problem, it avoids serious mathematical pathologies inherent to
zero-range interactions. This brief and non-technical report introduces the code, its design philoso-
phy, various benchmarks used to test its accuracy, and places it within its proper physics context.
The current limitations and planned extensions of the code are also discussed.

INTRODUCTION

The complete and accurate description of nuclei is a
many-body problem, encompassing phenomena from the
single-particle behavior of a few valence nucleons to the
collective motion of many or all the constituent nucle-
ons. The nuclear theorist’s arcanum, therefore, is a
tractable solution to this general many-body problem.
Unfortunately, while two-body systems can still be de-
scribed analytically, the general many-body problem is
not amenable to an exact mathematical treatment, and
must be tackled by some approximation. The Hartree-
Fock (HF) method provides an approximate solution to
the many-body problem with two important features: i)
for many applications, it constitutes a very good first ap-
proximation, and ii) there are well-established, rigorous
procedures for improving the HF solution and restoring
the physics missing in the approximation.

In the HF approximation, the many-body wave func-
tion of the nucleus is reduced to a single Slater determi-
nant of single-particle wave functions. The exact nuclear
wave function is a linear superposition of an infinite num-
ber of such Slater determinants. A variational procedure
is used to select the Slater determinant that minimizes
the energy of the system. This variational procedure can
be written as a set of non-linear equations that must
be solved iteratively. Another approximation inherent to
the HF method is the neglect of residual interactions. In-
stead, each nucleon interacts with a mean field generated
by all the nucleons. The HF method in its most basic in-
carnation, therefore, is well-adapted to the description
of the ground state of magic nuclei, for which the excita-
tion of nucleons to valence orbitals is energetically costly.
However, even these basic calculations can give surpris-
ingly good predictions for the ground-state properties of
nuclei far from magicity, as shown in Fig. 1.

The input to the HF procedure is the effective (i.e., in-
medium) interaction between the nucleons, used to gen-
erate the mean field. The mathematical form of this in-
teraction is constrained, but not completely and uniquely
defined by symmetry requirements (e.g., rotational and

translational invariance). Therefore an explicit form
must be postulated for this interaction, and its parame-
ters must be fixed by a fit to experimental observables.
The general form for the HF interaction consists of a cen-
tral part, a spin-orbit interaction, a density-dependent
contribution, and a Coulomb interaction which is applied
only between protons. The density-dependent part of the
force is motivated by more fundamental approaches, such
as the Brueckner G-matrix theory, which describes the
nucleon-nucleon interaction in the presence of other nu-
cleons, using an approach that is formally similar to that
of scattering theory.

The earliest form used for the central part of the in-
teraction was introduced by T. H. R. Skyrme [1], and
consisted of a delta function with its second-order deriva-
tives. The main appeal of this force is its relative mathe-
matical simplicity, but although it is still used in modern
calculations, it does not take into account the finite range
of the nuclear interaction. In fact, the Skyrme interaction
suffers from insidious mathematical pathologies [2] which
prevent any self-consistent extension of the HF method
to include the residual interactions beyond the mean-field
approximation. The limitations of the Skyrme interac-
tion are most easily grasped in a Fourier analysis of the
zero-range force. Then, the delta function in the relative
nucleon-nucleon coordinates, and its second-order par-
tials, transform into functions which are constant and
quadratic in the relative momenta, respectively. Instead
of vanishing rapidly with high relative momenta, as in
the case of finite-range forces, the constant term yields
the perplexing result that a pair of nucleons can be im-
parted any relative momentum from 0 to oo with equal
probability. Worse yet, the quadratic term preferentially
scatters the nucleon pair to ever-higher relative momenta.
These pathological behaviors are hidden to some extent
for bound states by the localized form of their wave func-
tions, but cannot be avoided when considering particle-
hole excitations of the nucleus, whether for the study of
excited states or to restore missing correlations in the
description of ground-state properties. When consider-
ing these properties, proponents of the Skyrme interac-
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Figure 1: Top panel: binding energies per nucleon calculated
for stable and long-lived even-even nuclei using the Hartree-
Fock code FRANCHFRI with the Gogny D1S force. Bot-
tom panel: corresponding difference between calculated and
measured binding energies per nucleon. The discrepancies
between calculated and measured values are mainly due to
correlations missing in a pure HF calculation.

tion are forced to introduce ad-hoc procedures to placate
the inherent pathologies of the delta functions, and in
the process, they sacrifice the central tenet of the HF
methodology: self-consistency. In 1975, D. Gogny intro-
duced a finite-range form of the central part of the force
[3], as an alternative to the Skyrme interaction. The D1S
parameterization of the Gogny force, used in the calcula-
tions in Fig. 1, was fixed by a fit to properties of nuclear
matter and of the nuclei 60, ?°Zr, and 20%Pb.

The approximations inherent to the HF method make
it a tractable approach to the nuclear many-body prob-
lem. For some applications, however, a more sophisti-
cated treatment may be required, and the physics omit-
ted in the HF approximation, mainly in the form of miss-
ing residual correlations, must be restored. Moving away
from magic nuclei, the experimentally-observed decrease
in the energy gap for even-even nuclei signals an increase
in the importance of pair correlations between nucleons,

relative to the mean-field approximation. For these nu-
clei, the residual pair correlations are usually included
using the prescription given by Bogoliubov [4], and re-
sulting in the extension to the HF formalism known as the
Hartree-Fock-Bogoliubov (HFB) method. The prescrip-
tion incorporates pair correlations while maintaining, to a
large extent, the simplicity of the mean-field approxima-
tion through a mathematical transformation that maps
pairwise-interacting particle into non-interacting quasi-
particles. This procedure does not introduce any new
parameters to the HF method, but its relative simplicity
is bought at the cost of violating the strict conservation of
the number of nucleons. Fortunately, this broken sym-
metry is partially restored by imposing conservation of
the average number of nucleons.

Next, the HFB procedure can be extended to describe
collective motion of the nucleus. Small-amplitude mo-
tions (e.g., low-energy vibrations of the nuclear surface)
give rise to particle-hole excitations across the Fermi
surface, and the resulting residual interactions between
particles and holes (as well as those particle-particle
and hole-hole correlations beyond pairing) can be taken
into account by the Quasiparticle Random-Phase Ap-
proximation (QRPA) [5]. For large-amplitude collec-
tive motion that can occur in phenomena such as shape
isomerism, fusion, and fission, the nucleus can explore
shapes far from that given by the HFB solution. The
HFB method is designed to find a single particular shape
of the nucleus, the one that minimizes its energy, but
can readily be extended by introducing external fields to
yield solutions for any desired nuclear shape. The Con-
strained Hartree-Fock-Bogoliubov (CHFB) method in-
troduces the required external fields via Lagrange multi-
pliers. Each CHFB solution is a single Slater determinant
for a given nuclear shape, but a large-amplitude collective
motion of the nucleus consists of a mixture of all these so-
lutions. The Generator-Coordinate Method (GCM) con-
structs such a linear superposition of the CHFB solutions
through a variational procedure.

In summary, the HF method can be viewed as a start-
ing point for the solution of the nuclear many-body prob-
lem. The extensions listed above can then be used to de-
scribe a very wide array of phenomena in nuclear struc-
ture and nuclear reactions. The HF method with all its
extensions is a powerful, versatile tool which requires an
effective nucleon-nucleon interaction as its only input.

IMPLEMENTATION

Some of the extensions described above (HFB, CHFB)
can be built directly into the HF procedure, while the
others (QRPA, GCM) are applied to the HFB solutions
a-posteriori. In the version of the code FRANCHFRI
described in this paper, the HF method is extended to
allow external constraints. With this extension, and the



realistic finite-range Gogny interaction, a variety of nu-
clear shapes and their properties can be investigated.
The choice of a finite-range force instead of the sim-
pler zero-range delta interaction poses a computational
challenge. In principle, two-body matrix elements of the
finite-range interaction require the accurate evaluation
of 6-dimensional integrals in spatial coordinates, at great
computational cost. In practice, a separation technique
developed by D. Gogny [6], expands the two-body ma-
trix elements in the deformed harmonic-oscillator basis
into a finite sum of products of one-body matrix ele-
ments, which can be written in closed form and eval-
uated very quickly. This separation method is not an
approximation, but a mathematical identity that casts
the two-body matrix elements into a form well-suited to
fast computations. In addition, intermediate quantities
that are combined to form the two-body matrix elements
are calculated once and for all when the code begins ex-
ecution, and need not be re-evaluated during each HF
iteration, thereby leading to a substantial speed-up of
the code. Two assumed symmetries of the Hamiltonian
are hardwired into the current version of FRANCHFRI:
time-reversal symmetry, and axial symmetry. Further
symmetries, such as parity and z-axis signature, can be
imposed at runtime by the user. These symmetries re-
duce the HF Hamiltonian matrix to block-diagonal form,
thereby decreasing the number of non-zero two-body ma-
trix elements that must be calculated, and further speed-
ing up the program.

The HF calculations must be performed in the intrin-
sic frame of the system, which requires a subtraction of
the spurious motion of the center of mass of the nucleus.
This subtraction is routinely carried out to first order in
many HF codes, by removing the one-body contribution
of the center-of-mass motion. In the code FRANCHFRI,
the full contribution of the center-of-mass motion, which
includes two-body components, can optionally be sub-
tracted out, leading to more accurate HF calculations,
especially for lighter nuclei. The exchange part of the
Coulomb interaction is also often calculated in an approx-
imate way in other HF codes, using the so-called Slater
approximation [7], for efficiency reasons. In FRANCH-
FRI, the separation method is applied to the Coulomb
interaction, and the Coulomb-exchange contribution can
be calculated exactly at each HF iteration or optionally,
at the last iteration only for greater speed.

We close the discussion of the code with some bench-
marks comparing FRANCHFRI calculations with calcu-
lations using the HF code HFBJINABE [8], which is
meant for use in spherical nuclei only, and with pub-
lished results for axially-symmetric systems [9]. Figure
2 shows a comparison of HF energies calculated using
the codes FRANCHFRI and HFBJINABE. A more strin-
gent test of the accuracy of the code FRANCHFRI is
displayed in Fig. 3, which compares single-particle en-
ergies calculated with the two codes. To test the accu-
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Figure 2: Comparison of HF energies calculated by the codes
FRANCHFRI and HFBJINABE for the spherical nuclei *He,
160y, 4°Ca, *8Ca, *Zr, and 2°®Pb.

racy of the code FRANCHFRI for non-spherical nuclei,
a comparison with results in [9] of calculated HF ener-
gies is shown in Fig. 4, and the corresponding charge
quadrupole moments are compared in Fig. 5. In all cases,
the code FRANCHFRI reproduces the benchmark results
precisely, with any remaining discrepancies attributable
to negligible differences in numerical accuracy. Finally,
we show in Fig. 6 the typical execution times achieved
by FRANCHFRI, running on a single Intel Pentium M
2.13 Ghz processor, for various sizes of the harmonic-
oscillator basis. For typical applications, therefore, the
code produces results within very reasonable execution
times.

FUTURE DIRECTIONS

The version of the code FRANCHFRI presented in this
paper is a powerful tool, but as discussed in the intro-
duction, its full potential once augmented by standard
physics extensions, is truly formidable. One such exten-
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Figure 3: Largest absolute difference between neutron and
proton single-particle energies of occupied states, calculated
by the codes FRANCHFRI and HFBJINABE for the nuclei
displayed in Fig. 2, using the full Gogny D1S interaction.
Note the range of the y-axis scale, indicating that the largest
discrepancy between the codes is 60 eV for the neutron levels
in 2°Pb. The observed discrepancies are due principally to
differences in numerical accuracy, and the different number of
decimals places printed by the two codes in the output files.

sion, the ability to impose external constraints on the HF
solution has already been implemented.

In this section, we outline an incremental development
of the code to increase its capabilities while producing, at
each stage, self-contained tools that can be immediately
applied to nuclear physics problems of interest. The next
planned improvement to the code is the inclusion of pair-
ing (i.e., residual particle-particle and hole-hole correla-
tions), making it possible to perform realistic calculations
in nuclei far from magicity. Once the HFB code has been
implemented and tested, the axial symmetry built into
the current version of FRANCHFRI can be broken, open-
ing the door to the study of triaxial nuclei, and triaxial
shapes of nuclei, such as those typically encountered dur-
ing the fission process of actinides near the first barrier.
Fast execution speed is an essential feature of the HF
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Figure 4: HF energies for the oblate and prolate minima in
20Ne, 2*Mg, 28Si, *2S, and 36Ar, calculated using the code
FRANCHFRI, and compared to calculations published in [9].

and HFB implementations, and parallel versions of the
code will be developed to ensure timely calculations in
large-scale applications. This will be especially useful for
fission calculations, which must explore multidimensional
energy surfaces requiring HF solutions for a large num-
ber of nuclear shapes. The GCM (and its time-dependent
variant, the TDGCM) will be implemented in a separate
code to study the dynamical aspects of large-amplitude
nuclear phenomena like fission. The QRPA could also be
implemented in a separate program. Of course, there are
many more extensions to the basic HF formalism that can
be considered, beyond the ones discussed here. Other ap-
plications that combine the HF method with shell-model
[10] and shell-model Monte-Carlo [11] formalisms to re-
store missing correlations and perform realistic calcula-
tions of nuclear properties, look promising. Furthermore,
even more realistic formulations of the Gogny force can
be investigated, and a temperature-dependent HF for-
malism can be implemented to perform calculations at
even higher excitation energies than is currently envis-
aged.
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Figure 5: Comparison of charge quadrupole moments for
the oblate and prolate minima in Fig. 4, between the code
FRANCHFRI and the results published in [9].

From a practical point of view, the central appeal of the
HF method is that its only input is the effective nucleon-
nucleon interaction, which is adjusted once and for all.
All additional required physics is introduced in a self-
consistent way through the strict application of the laws
of quantum mechanics. Therefore, it should come as no
surprise that the HF method, along with its extensions
has been used in almost every aspect of nuclear physics.
From the prediction of energy spectra and their decay
properties, to the calculation of nuclear-reaction observ-
ables, and even to the fission process, arguably the most
complex and dynamic phenomenon in nuclear physics.
The code FRANCHFRI discussed here, along with its
planned extensions, presents LLNL with a timely oppor-
tunity to tackle a variety of nuclear-physics using a tool
that implements a realistic in-medium nucleon-nucleon
interaction in a code that is both fast and versatile.

This work was performed under the auspices of the
U.S. Department of Energy by the University of Cali-

fornia, Lawrence Livermore National Laboratory under
Contract W-7405-Eng-48.

o—e 4He
10— | =—= 236U

=
St 1
=
g
g s .
Q
£
F - -
0 & l & L‘—A
0 2 4 6 8 10 12 14

Max oscillator shell number

Figure 6: Execution times per HF iteration for *He and *5U
using the code FRANCHFR], as a function of the maximum
harmonic-oscillator shell number used in the basis.
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